The Battery Magazine Logo

Subscribe to The Battery Magazine's Current Newsletter & never miss an update!

    Close Menu
    The Battery MagazineThe Battery Magazine
    • Home
    • Batteries
      • EV & Automotive
      • Portable Power
      • Stationary & Industrial
    • Articles
    • Charging
    • Manufacturing
    • Renewable
    • Hydrogen
    • Tenders
      • Energy Storage Tender
      • Renewable Tender
    • Events
    • E-Mag
    Facebook LinkedIn WhatsApp
    The Battery MagazineThe Battery Magazine
    • Home
    • Batteries
      • EV & Automotive
      • Portable Power
      • Stationary & Industrial
    • Articles
    • Charging
    • Manufacturing
    • Renewable
    • Hydrogen
    • Tenders
      • Energy Storage Tender
      • Renewable Tender
    • Events
    • E-Mag
    LinkedIn Facebook WhatsApp
    The Battery MagazineThe Battery Magazine
    Home » Future Developments in EV Battery Thermal Management

    Future Developments in EV Battery Thermal Management

    aishwaryaBy aishwaryaDecember 15, 2022 Battery 4 Mins Read
    Facebook Twitter LinkedIn WhatsApp

    Amid the rising popularity of Electric Vehicles across the world, local manufacturing of batteries and EV battery thermal management plays an integral role for EV battery design.

    Thermal ManagementEarly trends in the market largely revolved around the adoption of active cooling for the battery pack, and now this is the industry standard.

    According to a recent Battery Thermal Management report from IDTechEx, it is witnessed that the EV market and the thermal management strategies are increasingly getting adopted by OEMs and their suppliers, with a look to the future and how key EV technology trends will impact these methods for electric vehicle batteries, motors, power electronics, and charging infrastructure.

    However, batteries, motors, and power electronics in EVs continue to evolve, with developments of cell-to-pack designs, directly oil-cooled motors, and silicon carbide power electronics being just a few of the key trends that will impact thermal strategies across the key driveline components in an EV.

    As the thermal management market evolves, opportunities arise for materials companies, component suppliers, vehicle designers, and other players in the rapidly growing EV industry.

    Battery Design Trends

    The key factors for EV battery development are increasing energy density and reducing costs. This has been made more difficult with supply chain shortages and rising costs of materials, but battery designs are becoming simpler as designers start to remove materials that are not cells. This strategy culminates in cell-to-pack or cell-to-body designs. Cell-to-pack eliminates strict module housings in favor of having all of the cells stacked together. Cell-to-body makes the battery a structural part of the vehicle. Designs have made it onto the road, with further announced designs coming to market soon. With the removal of so much from the pack, how does this impact thermal management?

    Active Cooling and Market Trends

    Some active cooling strategies will remain similar, with a large cold plate beneath or above the cells, albeit now in contact directly with cells rather than their module housing. The bigger change comes from larger form factor cells becoming more common in cell-to-pack designs. The larger form factor means that less induvial cells per pack are required. Examples of this can be seen in BYD’s Blade battery with very long prismatic cells or in Tesla’s use of the larger cylindrical 4680 cells. These changes mean that less individual coolant channels are required compared to previous designs. BYD uses one large cold plate across the top of the pack, and Tesla can now use 12 coolant lines for side wall cooling cells compared to the 28 previously used in the 2170 packs.

    The transition to active liquid battery cooling has happened quicker than many, including IDTechEx, had originally predicted. In the first half of 2022, over 70% of the electric car market was using liquid cooling. The benefits of greater thermal performance and integration with the whole vehicles thermal management system have outweighed the reduced complexity of air cooling. However, we have seen greater refrigerant cold plate cooling adoption, gaining a 6.5% greater market share in 2022 over 2021. While typical automotive coolants and refrigerants have been used to date, there is gathering interest in tailoring these coolants to EVs, with lower electrical conductivity as one of the new features. IDTechEx’s new report forecasts the adoption of air, liquid, refrigerant, and immersion cooling for EV batteries in terms of kWh demand.

    Thermal Interface Materials

    Design integration also has a severe impact on thermal interface material (TIM) utilization, pushing in favor of thermally conductive adhesives to make a structural connection rather than the typical gap filler seen in many existing designs. The new IDTechEx report includes forecasts for gap pads, gap fillers, and thermally conductive adhesives in EV batteries.

    IDTechEx’s report, “Thermal Management for Electric Vehicles 2023-2033”, obtains information from primary and secondary sources across the EV industry. The research also utilizes IDTechEx’s extensive electric car database that consists of over 450 model variants with their sales figures for 2015-2022H1, battery capacity, battery thermal strategy, motor power, motor cooling strategy, and many other specifications. Market shares and forecasts are given for thermal management strategies in batteries, motors, and power electronics, plus material forecasts for immersion, TIMs, and fire protection.

    For more info, please click here.

    batteries component suppliers coolants gap fillers gap pads Market shares motors news Tesla thermal management
    aishwarya

    More article from aishwarya

    Keep Reading

    Ducati Unveils Solid-State Electric Prototype Amid MotoE Pause

    IEC 89th General Meeting Commences in New Delhi to Drive Global Action on Sustainability and Clean Energy

    PeakAmp Secures ₹12 Crore Seed Funding to Advance EV Battery Circularity in India

    Leave A Reply Cancel Reply

    thirteen − 3 =

    MANUFACTURING & MATERIALS

    IFC Commits 137 Million Dollars to Boost E-Bus Deployment in India with JBM Group

    September 12, 2025

    Covestro Expands NIA-PFAS Coating Production to Asia-Pacific

    September 10, 2025

    Canadian Solar Unveils Next-Gen FlexBank 1.0 Battery at RE+ 2025

    September 5, 2025

    Winline Technology Unveils Smart Energy Innovations at South America’s Largest Renewable Expo

    September 4, 2025
    Batteries

    Ducati Unveils Solid-State Electric Prototype Amid MotoE Pause

    September 17, 2025

    IEC 89th General Meeting Commences in New Delhi to Drive Global Action on Sustainability and Clean Energy

    September 17, 2025

    PeakAmp Secures ₹12 Crore Seed Funding to Advance EV Battery Circularity in India

    September 17, 2025

    Uttar Pradesh Issues Second 375 MW/1500 MWh Standalone BESS Tender

    September 17, 2025

    Subscribe for Updates

    Get the latest news about energy storage in your inbox.

      © 2025 Thebatterymagazine.
      • Home
      • About Us
      • Contact Us
      • Privacy Policy
      • Terms of Service

      Type above and press Enter to search. Press Esc to cancel.