The Battery Magazine Logo

Subscribe to The Battery Magazine's Current Newsletter & never miss an update!

    Close Menu
    The Battery MagazineThe Battery Magazine
    • Home
    • Batteries
      • EV & Automotive
      • Portable Power
      • Stationary & Industrial
    • Articles
    • Charging
    • Manufacturing & Materials
    • Events
    Facebook X (Twitter) Instagram
    The Battery MagazineThe Battery Magazine
    • Home
    • Batteries
      • EV & Automotive
      • Portable Power
      • Stationary & Industrial
    • Articles
    • Charging
    • Manufacturing & Materials
    • Events
    LinkedIn Facebook
    The Battery MagazineThe Battery Magazine
    Home » Li-ion Graphite Anodes Market to Grow Considerably by 2029

    Li-ion Graphite Anodes Market to Grow Considerably by 2029

    aishwaryaBy aishwaryaAugust 29, 2023 Battery 4 Mins Read
    Facebook Twitter LinkedIn WhatsApp
    Li-Ion Graphite

    By Alex Holland, Principal Technology Analyst at IDTechEx

    With the growing trend of electric vehicles in every country, extensive research is happening on new Li-ion graphite anodes technologies.

    Li-Ion GraphiteThe next generation of silicon anode materials are inching closer to commercialization with the promise of improved energy density and rate capability.

    Lithium-metal and anode-free solutions continue to be explored, while options such as niobium oxides have also garnered some interest for fast-charging batteries. Nevertheless, the good overall performance and low cost of graphite means that it is predicted to maintain its dominance in the Li-ion industry.

    Graphite Demand Remains Steadfast

    Despite ongoing developments in new anode materials, graphite, the material used for the past 30 years in Li-ion anodes, is forecast to remain the most widely used anode material in Li-ion batteries through the medium term. IDTechEx forecasts that the demand for Li-ion graphite anodes will grow considerably and exceed 2 million tonnes by 2029.

    Natural or Synthetic Graphite

    Two broad types of graphite are used for Li-ion anode, natural and synthetic (or artificial), each with its own advantages and disadvantages. Natural graphite is generally a lower-cost option than synthetic. It can also offer a slightly higher initial capacity but also tends to have a lower cycle life, C-rate capability, and initial coulombic efficiency. In contrast, synthetic graphite is more expensive than natural graphite due to the higher energy requirements for graphitization, as well as being more difficult to mill into spherical particles, but it also tends to offer longer cycle life and marginally higher initial coulombic efficiency. However, there can be an overlap in the performance and cost of these two types of graphite, and the differences between them have also been closing. Beyond just the type of graphite, various cell design factors such as cathode choice, electrolyte additives, coatings, particle size and distribution, electrode balance, as well as the specification and quality of the graphite product will have a significant impact on eventual cell performance, cost, and cycle life.

    Both synthetic and natural graphite continue to be used with blends widely utilized. IDTechEx estimate that there is a roughly even split, by kt sales, between synthetic graphite and natural graphite. However, there has been a slight shift toward natural graphite over the past few years due to cost pressures and high energy prices.

    A Changing Landscape?

    As with other raw materials, increasing the output of natural graphite to keep up with the rapidly growing demand for Li-ion batteries has proven challenging. The US DoE and the European Commission have included natural graphite in their latest critical raw materials/minerals lists due in part to Li-ion batteries’ important role in transport electrification and stationary storage applications. China’s dominance of graphite anode production also presents a supply risk, though Li-ion graphite anode production outside of China is starting to develop from players such as Syrah Resources, Northern Graphite, and Nouveau Monde in North America, or Talga Resources, SGL Carbon and Vianode (synthetic) in Europe, amongst others.

    In addition to diversifying material supply, improved sustainability and ESG metrics will be important factors for new graphite production. Lower energy consumption and embedded emissions will become an increasingly important metric. This is especially true in Europe, with the European Battery Regulation set to implement carbon footprint labels and declarations for Li-ion batteries above 2 kWh in size. This may favor natural graphite and its lower energy consumption, though particulate emissions and acid waste streams from the purification process also need to be carefully managed. Lower cost and low carbon energy from renewable sources could help improve the competitiveness of synthetic graphite in this respect, though it will still be reliant on fossil feedstock. These points help to further highlight the fine balance between natural and synthetic graphite.

    Ultimately, the dynamic Li-ion graphite anode market and high growth rate in Li-ion demand will ensure ongoing demand for both synthetic and natural graphite anode materials.

    For more details, click here.

    carbon energy cell design ESG metrics graphitization IDTechEx Li-ion batteries synthetic graphite
    aishwarya

    More article from aishwarya

    Keep Reading

    CATL Announces HKEX Listing to Support the World’s Zero-Carbon Economy

    Ameresco Announces a $78 Million Facility to Finance Battery Storage Energy Asset

    Biwatt unveils a Sodium-Ion Battery Energy Storage System

    Leave A Reply Cancel Reply

    ten − 5 =

    MANUFACTURING & MATERIALS

    JinkoSolar Signs a Memorandum of Agreement with SolarToday

    May 19, 2025

    Zelestra Signs an Agreement With Sungrow

    May 19, 2025

    Risen Energy launches Three New Product Series at Intersolar Europe 2025

    May 19, 2025

    Altilium announces breakthrough results for large scale cell manufacturing using recycled battery materials

    May 16, 2025
    Batteries

    CATL Announces HKEX Listing to Support the World’s Zero-Carbon Economy

    May 20, 2025

    Ameresco Announces a $78 Million Facility to Finance Battery Storage Energy Asset

    May 20, 2025

    Biwatt unveils a Sodium-Ion Battery Energy Storage System

    May 20, 2025

    Enfinity Global Gets €100M Eiffel Bond to Support European Solar and Storage Initiatives

    May 20, 2025

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

      © 2025 Thebatterymagazine.
      • Home
      • About Us
      • Contact Us
      • Privacy Policy
      • Terms of Service

      Type above and press Enter to search. Press Esc to cancel.